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The couple on a ball rotating relative to an otherwise quiescent suspension of
comparably-sized, neutrally buoyant spheres is studied both experimentally and
numerically. Apparent ‘slip’ relative to the analytical solution for a sphere spinning
in a Newtonian fluid (based upon the viscosity of the suspension) is determined in
suspensions with volume fractions c ranging from 0.03 to 0.50. This apparent slip
results in a decrease of the measured torque on the spinning ball when the radius of the
ball becomes comparable with that of the suspended spheres. Over the range of our
data, the slip becomes more pronounced as the concentration c increases. At c = 0.25,
three-dimensional boundary-element simulations agree well with the experimental
data. Moreover, at c = 0.03, good agreement exists between such calculations and
theoretical predictions of rotary slip in dilute suspensions.

1. Introduction
Previous experimental studies (Mondy, Graham & Jensen 1986) exploring a fairly

wide range of parameters have shown that the (mean‡) sedimentation velocity of a
ball falling under the influence of gravity through an otherwise quiescent suspension
of similarly-sized neutrally buoyant particles appears to be the same as would occur
in a hypothetical single-phase Newtonian fluid continuum of viscosity µs , with no-slip
occurring at the surface of the falling ball. Later experimental studies (Milliken et al.
1989) yielded results consistent with this, provided that the ball size was not too small
relative to that of the suspended particles. In the dilute limit, the experimental results
are supported by the theoretical work of Almog & Brenner (1997).

† Present address: Honeywell, San Diego, CA 92173, USA.
‡ The instantaneous velocity of the ball varies in time depending upon its momentary proximity

to neighbouring particles. As a result, the particle trajectory experiences numerous fluctuations
from its mean motion. The mean sedimentation velocity of the falling ball is defined simply as
the vertical distance through which it falls divided by the time of fall, in the limit, of ‘long
times’ involving a sufficient number of ‘collisions’ with the suspended particles to assure that the
measured mean velocity is statistically significant. That this mean velocity is an intrinsic property
of the fluid–particle/falling-ball system, independent of initial conditions, etc., is a well-established
experimental fact. We mention this fact explicitly in order to compare the contrasting behaviour
observed in the rotary sphere case discussed in this paper.
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Almog & Brenner (1998) have shown, to terms of the first order in the volume
fraction c of suspended particles, that the couple L on a ball of radius a1 rotating
at constant angular velocity Ω in an otherwise quiescent unbounded suspension of
uniformly-sized spheres of radii a2 is not that expected from solving the Stokes
equations with a stick boundary condition at the ball surface (Stokes 1851; Happel &
Brenner 1986), namely

L = 8πµsa
3
1Ω, (1)

until the size ratio a2/a1 tends towards zero. Their theory describes the behaviour of
dilute suspensions, where µs is given by Einstein’s (1906, 1911) formula, µs = µ0(1 +
5c/2), with µ0 the viscosity of the pure suspending solvent. If we assume that the
suspension as a whole can be represented as a hypothetical single-phase continuum,
the diminution in L predicted by Almog & Brenner (1998) can be interpreted as a
reduction in the rotational friction factor owing to a partial slip boundary condition
acting uniformly over the sphere surface. Such slip models are employed to interpret
rotational diffusion measurements of molecular tracers. The Stokes–Einstein–Debye
(SED) model (Stokes 1851; Einstein 1956; Debye 1929), which treats the solvent
as a hydrodynamic continuum characterized only by a viscosity and temperature,
can be surprisingly successful even when being applied on a molecular scale (for
example, Ben-Amotz & Scott 1987). Sluch, Somoza & Berg (2002) have shown
that the SED rotational relationship with slip boundary conditions can hold, even
if the solute molecule is distinctly smaller than the solvent molecules. Koenderink
(2003) employed this rationale to model successfully the deviations from short-time,
rotational, SED scaling for colloidal hard-sphere suspensions. He described the drag
on the rotating tracer ‘as the sum of a drag contribution due to the solvent (which
sticks) and a drag contribution due to the (hydrodynamic) interactions with the host
particles’, explaining that there was no reason to suppose that the discrete particle
phase would exhibit a stick boundary condition.

To further study the hydrodynamic effects of the presence of suspended particles,
we report here experimental measurements of the couple experienced by a spinning
ball immersed in a neutrally buoyant suspension of spheres dispersed in a Newtonian
liquid in the concentration range 0.20 � c � 0.50. The size ratio a2/a1 varied from
0.026 to 1.00. In this size range Almog & Brenner (1998) predict an observable ‘slip’,
one that depends strongly on the size ratio. Such slip is also observed to occur
experimentally in our moderate- to high-concentration suspensions. As we decreased
the size of the spinning ball relative to the size of the suspended spheres, the apparent
spinning-ball viscosity decreased dramatically, thereby the suspension exhibited an
apparent ‘slip’ on the surface of the spinning ball.

Kunesh (1971) (see also Kunesh et al. 1985) measured the hydrodynamic resistance
to rotation of a ball at small Reynolds number, thereby confirming (1) for the
hydrodynamic torque exerted on a sphere submerged in a homogeneous Newtonian
liquid. In their experiments, the fluid was contained within a circular cylinder which
was rotated at uniform angular velocity Ω on a turntable, while the ball – which was
suspended by an overhead torsion wire connected to a fixed platform lying outside
of the liquid – remained at rest. In our comparable suspension experiments we, like
Kunesh et al. (1985), measured the torque on the ball by recording the small angle
of deflection of a thin, carefully calibrated torsion wire suspending the ball from a
fixed platform, while a cylindrical vessel containing an otherwise quiescent suspension
was rotated at a constant angular rate. To confirm the reliability of our system, the
viscosity of a suspension-free Newtonian liquid was measured with our ‘spinning-ball
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rheometer’ and found to lie within 1 % to 5% (depending on ball size and rotation
speed) of the viscosity measured in a conventional capillary viscometer. Thus, we were
able to obtain viscosity measurements in our home-built viscometer with roughly the
same accuracy as that in (much smaller) commercially available torsional viscometers.

As regards terminology, we refer to our apparatus as a ‘spinning-ball viscometer’,
despite the fact that ball itself does not spin (relative to a laboratory-fixed reference
frame). Rather, it is the cylinder walls bounding the suspension, and hence the
suspension itself, that spins (again in the laboratory frame). Thus, in the absence
of the stationary suspended ball, the suspension would simply undergo a rigid-body
rotation. From the point of view of low-Reynolds-number hydrodynamics, where
centrifugal effects are negligible, it is immaterial whether the ball spins and the
cylinder walls are at rest or vice versa. Only the relative ball/wall rotation rate is
important. Thus, our description of the apparatus as a ‘spinning-ball’ device is entirely
appropriate. (Indeed, from the point of view of an observer fixed in the cylinder walls,
and hence rotating with the suspension, the ball would appear to rotate at the
appropriate angular velocity. Of course, we are assuming that the suspension as a
whole adheres to the cylinder walls.)

The experimental apparatus allowed us to record the instantaneous time history
of the measured couple on the ball during the course of any one experiment (as
the particulate configuration of the suspension evolved in time owing to shear-
induced particle migration away from the neighbourhood of the ball). As subsequently
discussed, the short-time behaviour observed, following start-up, confirms the existence
of ‘apparent slip’, a phenomenon theoretically quantified by Almog & Brenner (1998),
albeit only in the case of dilute suspensions. The slip became more pronounced as
the concentration of the suspended particles increased. In the more concentrated
suspensions, the couple was observed to diminish with time towards an asymptotic
limiting value, presumably because the suspended particles moved, on average, away
from the ball as a result of ‘shear-induced diffusion’ effects of the type first identified
by Leighton & Acrivos (1987a).

In the case of very dilute suspensions, the experimental apparatus lacked sufficient
sensitivity to determine accurately the magnitude of the apparent slip. This prevented
quantitative validation of Almog & Brenner’s (1998) theoretical predictions, although
the observed trends were in the right direction. In lieu of this confirmation, a
boundary-element (BEM) simulation scheme involving numerical calculations of
particle interactions in Stokes flows was used to model the fluid response to a sub-
merged ball spinning in proximity to like-size neutrally buoyant spheres. These com-
putational simulations displayed the same qualitative trends as did the experiments at
higher concentrations, while matching the theoretical predictions of Almog & Brenner
(1998) reasonably well at low concentrations.

The following section describes the physical properties of the suspensions employed,
as well as the experimental apparatus and protocols. Analysis of the resulting
measurements is reported in the subsequent section. Following this, we present the
results of the BEM computations. Finally, our results are summarized and compared
with existing theory (Almog & Brenner 1998) where appropriate.

2. Experiments
2.1. Suspensions

Monodisperse suspensions consisting of polymethyl methacrylate (PMMA) spheres
uniformly dispersed in a highly viscous Newtonian liquid were created using three
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different particle sizes. Two of these three classes of particles consisted of individually
ground spheres of respective radii a2 = 1.59 and 3.18 mm (Clifton Plastics Company),
possessing published tolerances of ± 0.05 mm diameter and ± 0.025 mm sphericity.
The third type of particle consisted of Diakon MG102 (ICI-United Kingdom) spheres
sieved to yield an estimated mean radius of 0.327 ± 0.016 mm. The displayed tolerance
is simply the range of sizes allowed between the sieve on which the particles were
collected and that lying immediately above it.

The physical properties of each of the two suspending liquids employed in the
experiments were established as follows: a Cannon-Fenske viscometer and Mettler/
PAAR DMA45 calculating digital density meter were, respectively, used to determine
the liquid’s kinematic viscosity and density. The operating temperature was adjusted
until no observable sedimentation or flotation of the suspension as a whole occurred
over a period of several days. The first mixture consisted of 36 wt % UCON-oil
H-90 000, a polyalkylene glycol (Union Carbide Corporation), 14 wt % Triton X-100,
an alkylaryl polyether alcohol (J. T. Baker), and 50 wt % 1,1,2,2-tetrabromoethane
(Eastman Kodak). A small quantity (1 % of the weight of tetrabromoethane) of
Tinuvin 328 (Ciba Geigy), an inhibitor, was added to the mixture to prevent
breakdown and discoloration of the tetrabromoethane by ultraviolet radiation or
dissolved iron. This mixture possessed a viscosity of 5.2 Pa s and a density that
matched that of the 3.18 mm radius spheres at 19 ◦C. The second liquid used consisted
of a mixture of 90 wt % UCON oil H-90 000 and 10 wt % 1,1,2,2 tetrabromoethane.
The density of this mixture matched that of the 0.327 mm radius spheres at 25 ◦C
as well as that of the 1.59 mm radius spheres at 17 ◦C. The respective viscosities
of the mixture at these two temperatures were 4.1 and 6.5 Pa s. The large particles
and choice of viscous fluids dictated that neither Brownian motion nor interparticle
colloidal forces would affect the suspension behaviour.

The suspensions studied ranged in volume fraction varying from c = 0.25 to 0.50.
Each suspension was prepared by individually weighing the desired fractions of
particulate and fluid phases, and subsequently adding the spheres to the suspending
liquid. Weighing was performed using a Mettler PM34 balance, accurate to ± 0.01 g.
The suspensions were vigorously stirred by hand and allowed to de-gas prior to
initiating each experimental procedure.

2.2. Experimental apparatus

Figure 1 depicts the spinning-ball viscometer apparatus. Fluid or suspension contained
within the cylinder (inner radius R0 = 73.0 mm) was rotated at a given rate by
mounting the cylinder on a turntable. The ball was suspended along the cylinder axis
by a thin rigid rod attached to a calibrated torsion wire, the latter being affixed to
a mirror. The other end of the torsion wire was connected to an absolute encoder
(Gurley 16 bit) mounted on the shaft of a servomotor (Reliance Electric model E586)
so that the position of the upper mount of the torsion wire was always known
accurately. Angular displacement of the ball resulted in a comparable rotation of
the mirror. A Spectra-Physics Model 133 Helium–Neon Laser created a light beam
that was, in turn, reflected from the suspended mirror to a laser-detector position
sensor (United Detector Technology). The laser detector, which generates a voltage
signal corresponding to the torsion wire displacement, was calibrated prior to each
experiment using the absolute encoder as the reference. If the ball rotation caused
the light beam to move off the detector, the servomotor served to bring the beam
back to the detector. The angle through which the torsion wire was twisted by the
action of the hydrodynamic torque on the sphere was then determined from the sum
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Figure 1. Sketch of the experimental apparatus.

of the angle measured from the encoder mounted on the servomotor and the angle
computed from the laser-detector position sensor.

The turntable was driven with a Kollmorgen Motion Technologies PMI gear-
reduced servomotor (9FGHDT/50:1) through a rubber friction drive wheel. A
Kollmorgen KXA-48-8-16/PS/AUX servo amplifier was used together with the
integral servomotor tachometer for closed-loop velocity feedback, so as to maintain
a stable rotational velocity. Periodic recalibration of the tachometer voltage was
performed using a magnetic sensor to count revolutions during a specified time
interval. Also recorded was the tachometer voltage during each experiment, used
to determine the instantaneous rotation rate Ω at each data acquisition time. Data
acquisition was performed at a rate that ranged from five recordings per second for
short-duration experiments (under 20 revolutions) to 20 recordings per minute for
longer experiments (hundreds of revolutions).

As the suspending liquid properties depended strongly on temperature, experiments
were performed in a controlled temperature environment. A constant-temperature
circulator (Lauda Company, Brinkman Instruments), capable of maintaining a pre-
set temperature to within ± 0.02 ◦C, circulated cooling water through the jacket
surrounding the suspension-containing vessel. The entire cylinder was insulated,
including the top. (A small hole drilled in the top cover allowed the rod to rotate
unimpeded.) Before and after each experiment, temperature measurements within
the suspension were effected using an RTD probe accurate to 0.01 ◦C. Capillary
viscometer measurements, performed on the pure solvent over the narrow range
of operating temperatures employed, provided the requisite viscosity data, µ0, to
correct for small temperature fluctuations as well as to estimate the accuracy of the
spinning-ball viscometer measurements.

Four brass spinning balls were used, possessing respective radii a1 of 3.18, 6.35, 9.53
and 12.7 mm. Permanently attached to the periphery of each ball was a brass rod of
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radius b = 0.57 mm. During an experiment, this rod was attached to either one of two
torsion wires, whose diameters were 0.2 and 0.4 mm. The larger torsion wire was used
with the two larger balls and the smaller one with the two smaller balls. Each torsion
wire was calibrated by measuring its period of free harmonic rotary oscillation with
disks possessing known moments of inertia attached to the wire (Kunesh 1971).

Each experiment was performed in either one of two available modes – automatic or
manual. In the automatic mode, used to record long-time data without an operator
being present, a Kollmorgen KXA-48-8-16/PS/AUX servo amplifier was used for
closed-loop control to keep the laser spot centred on the laser detector. The system
could handle large angular displacements, and was, in fact, most stable when using
the largest spinning ball (which resulted in an adequately large deflection of the
torsion wire, accompanied by appropriate damping of any oscillations). However, in
the automatic mode, fluctuations in the measured angle owing to the feedback control
could not be absolutely separated from natural variations in twist angle arising from
the temporally changing hydrodynamic interactions between the spinning ball and the
suspended spheres immediately surrounding it. Accordingly, the system was operated
in the manual mode to obtain most of the data reported here. In this mode the
operator had to visually ensure that the laser spot remained focused on the detector.

2.3. Calculation of the torques

As the suspensions were relatively expensive, available resources were insufficient to
create an apparatus large enough to accommodate a very large ball, which would have
rendered negligible the additional torque created by the support rod in comparison
with that created by the ball itself (as was, in fact, done by Kunesh 1971). Instead,
we assumed the total torque recorded by the torsion wire to consist of the sum, Lt , of
the respective torques, L and Lr , on the ball and supporting rod (Lamb 1932), each
in isolation from the other:

Lt = L + Lr = 8πµsa
3
1Ω + 4πµshb2Ω, (2)

with h the depth of submersion of the rod below the free surface of the liquid. Because
of the linear response of the torsion wire, this torque was proportional to the angle
θ through which the torsion wire was twisted, with the proportionality coefficient
k appearing in the ‘Hookean’ relation Lt = kθ previously determined by calibration.
Thus, in the absence of wall effects, the apparent viscosity µs of the suspension could
be determined from the relation

µs =
kθ

4πΩ
(
2a3

1 + hb2
) . (3)

For a Newtonian fluid, Brenner (1964) showed that first-order boundary effects upon
the torque experienced by a concentrically-positioned rotating sphere in a circular
cylinder, arising respectively from the presence of the containing cylinder wall (radius
R0), cylinder bottom, and free surface are respectively of orders (a1/R0)

3and (a1/b)3,
where b is the distance of the sphere centre from the planar bottom or free surface.
These wall effects, though already small, in relation to the torque being measured,
were further minimized by positioning the sphere at the unique point (Brenner 1964)
where the increased resistance to rotation of the ball due to its proximity to the
cylinder bottom and walls is exactly offset by the lessened resistance resulting from
the presence of the free surface. In our device, the height of the liquid varied with the
concentration of particles, from about 17 cm to about 50 cm, because we increased
the concentration by adding particles to either the suspending fluid or an existing
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suspension. Therefore, this unique point varied slightly from experiment to experiment,
ranging between 3.4 cm and 3.7 cm below the liquid surface. Although the wall effects
arising in a suspension may not necessarily be identical to those experienced in
a homogeneous Newtonian liquid, especially when the ball size is comparable to
that of the suspended particles or to the mean distance between them, previous
experience with comparable falling-ball rheometry experiments in suspensions leads
us to believe that the use of Newtonian wall-effect corrections represents a reasonable
approximation (Mondy et al. 1986).

The rotational Reynolds number, Re = Ωa2
1ρ/µs , was always less than 0.1 under

the conditions encountered in our experiments. As such, inertial deviations from
creeping-flow wall effects (Mena, Levinson & Caswell 1972) were not of concern.

3. Experimental results
3.1. Pure suspending Newtonian liquid viscosities

Equation (2) was used to determine the viscosity µ0 of the Newtonian suspending
solvent. Viscosities measured in this way using the spinning-ball apparatus were com-
pared with those measured with the capillary viscometer at two nominal temperatures
(20 and 25 ◦C) and at five nominal rotation rates (2, 5, 10, 15 and 18 r.p.m.). Torques
produced under these conditions ranged from approximately 20 to 3200 g cm2 s−2. The
approximation of adding together the separate torque contributions from the ball and
the rod appears to be accurate even for our smallest ball, as shown in figure 2. The
latter shows the torque measured in the Newtonian solvent versus the result of (2)
calculated with the viscosity of the fluid determined by capillary measurements. Note
that no wall-effect corrections are included in figure 2, and that the unique point
serving to minimize wall effects in these experiments is situated at a depth of less
than 3.7 cm.

Twenty-five tests spanning the above range of temperatures and rotation rates were
performed with the 12.7 mm radius ball (figure 2a). The viscosity measured with the
spinning-ball apparatus never differed by more than 6 % from that measured with
the capillary viscometer, most differences being under 3 %. The largest deviations
occurred with deepest submersion of the spinning ball. In actual experiments with
suspensions, no more than 3.7 cm of rod extended below the surface of the liquid.
Agreement between the capillary and spinning-ball viscosities was also within 5 %,
with the other spinning balls situated at a depth of less than 3.7 cm. Results for the
smallest spinning ball are shown in figure 2(b).

3.2. Long-time suspension viscosity behaviour

It is well documented (Leighton & Acrivos 1987a; Abbott et al. 1991; Chow, Sinton &
Iwamiya 1994) that an initially homogeneous neutrally buoyant suspension of particles
can become spatially inhomogeneous when subjected to slow flow in non-uniform
shear fields. The spinning-ball apparatus creates just such an inhomogeneous flow
field, leading to the expectation that the particles will, over time, migrate away
from the high shear-rate region that exists in proximity to the rotating ball. This
phenomenon would, in turn, be expected to lead to a reduction in torque over time,
as observed with other rotational rheometers (Gadala-Maria & Acrivos 1980; Chow
et al. 1994). Our initial suspension experiments were therefore designed to establish
the time scale on which this migration phenomenon would affect the measured torque.
Measurements of apparent slip could and would then be taken at shorter times, chosen
to be significantly less than particle migration time scales. In such circumstances, the
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Figure 2. (a) The torque measured at various depths on a 12.7 mm radius ball suspended on
a 0.57 mm radius rod at various rotational rates compared with the analytical approximation,
equation (2); (b) The torque measured at two depths on a 3.18 mm radius ball suspended on
a 0.57 mm radius rod at various rotational rates compared with the analytical approximation,
equation (2).

initial configuration of particles would be expected to approximate the homogeneous
well-mixed distribution that presumably existed prior to the start of the experiment.

Figure 3 is a plot of the relative suspension viscosity, µr = µs/µ0, namely, the
viscosity µs of a c =0.50 suspension of 3.18 mm radius spheres measured in the
spinning-ball apparatus, divided by the solvent viscosity measured in the capillary
viscometer at the same temperature. The suspension viscosity µ0 was recorded with a
12.7 mm radius spinning ball at a rate of 5 measurements per second for the first 20
revolutions, subsequently reduced to a rate of 20 measurements per minute thereafter.
Also shown is the corresponding ratio for the pure solvent. In the suspension, the
torque signal fluctuated far more in magnitude than in the corresponding suspension-
free solvent case, the enhancement presumably arising from interactions between the
suspended particles and the spinning ball. Furthermore, a significant reduction in
torque with cumulative number of revolutions is apparent, as was to be expected
as a consequence of ongoing particle migration away from the spinning ball. No
comparable reduction occurred in the pure solvent viscosity as measured in the
spinning-ball apparatus. In addition to the expected reduction in torque at relatively
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Figure 3. Spinning ball viscosity of a suspension with c = 0.50 (diamonds) and the pure
solvent (triangles), both normalized by the capillary-measured viscosity of the pure solvent.

long times, there was an initial increase in torque upon start-up, as discussed in the
next subsection.

Because the torque at any instant of time is a function of the instantaneous
local configuration of the suspended spheres proximate to the spinning ball, we
repeated the measurements for each suspension and each ball size several times,
vigorously stirring the suspension prior to each experiment in an attempt to achieve
an initially spatially homogeneous distribution of particles. Based upon observations
of comparable falling-ball experiments (Mondy et al. 1986; Abbott et al. 1998), we
expected that this procedure, involving the vigorous mixing of the suspension before
each experiment and the averaging of several measurements performed during the
early stages of different experiments (i.e. prior to the onset of significant lateral
migration), would provide a meaningful measure of the couple experienced by a ball
in a suspension of approximately randomly distributed spheres at the specified (mean)
particle concentration. (The hand-mixing technique also has been shown to result in
a seemingly random distribution of orientations of non-spherical suspended particles,
Mondy et al. 1990.)

Figure 4 is a plot of the relative viscosity for five experiments performed with
the 12.7 mm radius spinning ball in a suspension of 3.18 mm radius spheres at c =
0.50. Each point represents an average over three to ten revolutions for any one
experimental protocol. Two observations pertaining to these data are particularly
noteworthy. (i) Despite these experiments being performed at essentially three
significantly different rotation rates, nominally 5, 10 and 15 r.p.m., the data collapsed
onto a single curve. This observation is consistent with the diminution in suspension
viscosity over time being caused by shear-induced migration of the particles (Leighton
& Acrivos 1987b; Phillips et al. 1992), where the particle migration is dependent upon
the absolute strain, but not the strain rate. (ii) The initial viscosity measured in any one
experiment differed from that measured in other ‘equivalent’ experiments by as much
as 15 to 20 %. This variation between experiments is much larger than was observed
with the pure suspending solvent under the same conditions, and presumably reflects
differences caused by variations in the microscale distribution of suspended particles
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Figure 4. Spinning ball viscosity at various rates of rotation for a suspension of 3.2 mm
radius spheres (c = 0.50) as measured using a 12.7 mm radius spinning ball.

in the neighbourhood of the spinning ball. Because of the relatively rapid initial
apparent viscosity diminution with increasing number of revolutions manifested in
figures 3 and 4, the phrase ‘early time’ in the subsequent discussion is defined to be
that occurring before four ball revolutions.

3.3. Short-time suspension viscosity behaviour

As seen in figure 3, there occurs an initial increase in the torque measured in a
concentrated suspension during the first ball revolution. Because we see no initial
rise in the torque in the suspending fluid, this increase in the torque measured in a
suspension is not thought to be caused by the finite time required for the system
to respond to the imposed steady rotation rate begun from rest. Rather, it appears
more likely to be caused by microstructural changes in the configuration of particles
created in the concentrated suspensions by the flow field, or by a longer-than-expected
transient start-up period due to minute inertial effects in the two-phase fluid. As will
be discussed later, using BEM simulations, we tested the hypothesis that the couple
experienced by a ball after one revolution in a suspension could be considered
as identical to that in a suspension of randomly distributed particles. In these
numerical simulations, we compared the initial torque for a ‘snapshot’ of randomly
distributed spheres to the torque observed after several revolutions of the spinning
ball. We found that the couple increases slightly during the first few revolutions
in the dynamic simulations, providing further evidence that the initial increase is
caused by microstructural changes in the configuration of particles. Because the
measured viscosity seemed to be fairly constant between one and four revolutions in
the experiments, it is this viscosity that we will take to be the ‘early time’ value in the
following narrative.

The early-time relative viscosity µr (measured between 1 and 4 revolutions of the
12.7 mm radius ball) of the 0.327 mm radius particle suspensions was found to be close
to the comparable suspension viscosity values gleaned from other types of rheometric
measurements, as shown in figure 5. Here, we are comparing our results with data
on suspensions of fairly uniform particles taken in shear and capillary rheometers, as
collated by Thomas (1965). The point shown for c = 0.25 represents an average of three
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Figure 5. Spinning ball relative viscosity (measured with a 12.7 mm radius ball for suspen-
sions of 0.327 mm radius spheres) compared with rheometric literature values (Thomas 1965).

experiments, each experiment representing an average of measurements performed
after more than one, but less than four revolutions. The point for c = 0.50 represents
the average of six such experiments. Error bars denote the 95 % confidence limits
on the measurements based upon a Student’s t-test conducted among the separate
experiments.

As the suspended particle size increased relative to that of the spinning ball,
the early-time (measured between one and four revolutions) apparent relative
suspension viscosity µr = µs/µ0 measured with the spinning-ball apparatus decreased
dramatically. Figure 6 illustrates this phenomenon for the c = 0.25, 0.40 and 0.50
suspensions. As discussed in § 1, this decrease in apparent viscosity can be interpreted
as an apparent slip on the surface of the spinning ball. Data for several spinning
ball sizes at several different suspension concentrations are included. For clarity, a
representative Student’s t-test confidence limit is shown for one point only. Within
estimated experimental error, at the same concentration, no difference exists among
those points characterized by the same a2/a1 ratio, but differing in their individual
a1and a2 values.

4. Boundary-element simulations
In order to bridge the gap between the experimental evidence of slip in concen-

trated suspensions and the dilute suspension theory of Almog & Brenner (1998),
boundary-element simulations of the spinning ball viscometer were performed.
Three-dimensional results for both instantaneous torque calculations from randomly
generated initial configurations and transient simulations were obtained. As the
boundary-element formulation has been documented and extensively benchmarked
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Figure 6. Spinning ball relative viscosity measurements for seven suspensions as a function
of the ratio of suspended-sphere/spinning-ball radius and for varying concentrations.

elsewhere (see e.g. Dingman et al. 1992; Ingber & Mondy 1993), only a brief overview
of the scheme is outlined here for completeness.

The velocity field for Stokes flow can be represented at an arbitrary field point y
in a domain possessing a boundary Γ by the boundary-integral equation,

cij ( y)uj ( y) +

∫
Γ

q∗
kji( y, x)uk(x)nj (x) dΓ = −

∫
Γ

u∗
ik( y, x)fk(x) dΓ, (4)

where uk and fk are the respective components of the velocity and traction fields
on the boundary Γ, nj is the component of the unit outward-normal vector on the
boundary, and u∗

ik and q∗
kji are, respectively, the fundamental singular Stokes velocity

and stress fields:

u∗
ik =

1

8π

(
δik

r
+

(xi − yi) (xk − yk)

r3

)
, (5)

q∗
ijk(x, y) =

3

4π

(xi − yi)(xj − yj )(xk − yk)

r5
, (6)

Here, r = | y−x| denotes the distance between points y and x, and δij is the Kronecker
delta. The coefficient cij appearing in (4) can be determined from the geometrical
configuration of the system; however, for those field points lying on smooth portions
of the boundary, cij = δij/2. For most problems, at each point in the domain, either the
appropriate velocity or traction component is specified for each coordinate direction.
The solution of the discretized boundary-integral equations provides a representation
of the unknown boundary information. This is the case for: (i) the surface of the
cylindrical container, where the velocity is set to zero; and (ii) the surface of the
spinning ball, where the solvent velocity is prescribed by the ball’s rotation rate.
However, on the surfaces of the suspended spheres, neither the solvent velocity nor
the solvent traction components are explicitly known a priori. In order to close
the system of equations, the boundary integral equation is supplemented with both
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kinematic and dynamic constraints specifying the force- and torque-free status of
each of the suspended spheres.

The kinematic conditions specify that each suspended particle behaves as a rigid
body on whose surface the solvent adheres. As such, these equations serve to relate
the solvent velocity ui at each point on a particle’s surface to the particle’s centroidal
linear and angular velocities. These equations are thus written as

ui = u
p
i + εijkΩ

p
j xk, (7)

where ui and u
p
i are, respectively, the components of the solvent velocity vector at

the surface of the particle and the particle velocity vector at the centre of the pth
sphere. Here, Ω

p
j represents the angular velocity vector of the pth sphere, xk is the

displacement vector of a point lying on the suspended sphere surface relative to its
centre, and εijk is the alternating unit tensor.

The quasi-static dynamical equations governing the forces and torques acting on
the suspended particles are consistent with the Stokes approximation, in the sense
that particle accelerations are neglected. The resulting equations for the pth particle
are ∫

Γp

fi dΓ + F
p
i = 0, (8)

∫
Γp

εijkx
p
j fk dΓ + T

p
i = 0, (9)

in which F
p
i and T

p
i are, respectively, the external force and torque (the latter about

the particle centre) exerted on the pth particle, and Γp denotes the surface of the pth
particle. For the spinning-ball problem, it is assumed that the spheres comprising the
suspension are freely suspended and neutrally buoyant, whence both F

p
i and T

p
i are

set equal to zero. Together with (4) and (7)–(9), the resulting physical problem is well
posed.

The boundary element chosen for this calculation is a superparametric element
in which the boundary geometry is quadratically approximated, and functional
approximations are taken to be constant within the elements. An adaptive quadrature
technique is used, wherein the number of Gauss points within an element is a function
of an integration severity number (Ingber & Mondy 1993). Essentially, the latter is
a measure of some characteristic dimension of the element divided by the distance
from the collocation node to the element. The larger the severity number, the larger
the number of Gauss points used to evaluate the boundary integrals numerically.

Fully three-dimensional calculations were performed for both a dilute suspension
(c = 0.03) and a moderately concentrated suspension (c =0.25) using a range of size
ratios a2/a1. The spinning ball was placed in the centre of a cylinder of (dimensionless)
height 10 and diameter 10 which was filled with fluid of viscosity µ0 = 1. For each
simulation, 220 spherical particles were placed in the viscometer domain using a
random number generator. The sizes of both the particles and the spinning ball were
chosen to achieve a given size ratio and particle concentration. For each case, the
domain was meshed with 122 nodes per particle and 5762 on the surrounding cylinder.
For the dilute simulations, the spinning ball was meshed with 122 nodes, whereas
for the more concentrated cases, the spinning ball was meshed with 362 nodes (or
1522 nodes for the case with the largest spinning ball, a2/a1 = 0.25). Figure 7 shows
a typical mesh with a random starting configuration.
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Figure 7. Typical grid of spinning ball in a cylinder filled with suspended balls. Here a2/a1 =
0.5 and c = 0.25. The particles in front of the spinning ball have been made transparent.

For each case, an initial Newtonian torque LN was calculated by performing a
simulation without particles being present. To calculate the suspension viscosity, two
methods were used. For all cases, an instantaneous torque was calculated using the
random initial configuration. Because the torque was observed to be highly dependent
on the arrangement of the suspended particles, all results were ensemble averaged over
many initial configurations (using ensembles of 10–60 configurations). Dynamic torque
measurements were also determined by performing transient simulations starting from
the random initial configuration. Since these systems are not ergodic, results from the
transient simulations were also ensemble averaged. The calculated values of the torque
are presented either in terms of the relative viscosity µr =µs/µ0 or as a dimensionless
extra torque �L′ = (Ls − LN )/8πµ0a

3
1cΩ , where Ls is the suspension torque and Ω

is the rotation rate of the spinning ball (which in all cases is 2π in non-dimensional
units).

In order to characterize finite-size effects in the computational domains as well as
mesh-resolution effects, Newtonian torque results are compared with (1) for a spinning
ball in an infinite domain. These results are presented in figure 8 as a function of the
radius of the spinning ball, where the torque has been non-dimensionalized by the
analytical solution equation (1).

For the dilute-solution calculations, where the radius of the spinning ball tends to
be small relative to the cylinder radius of 5, the Newtonian results are seen to be only
slightly larger (< 1 %) than the analytical solution. However, even for a fairly large
spinning ball radius of 1.2, the deviation from (1) is only 2 %. This corresponds to a
spinning ball radius which is twice the size of the suspended particle at a concentration
c =0.25 in the standard cylinder size (diameter = 10 and height = 10). Several test
cases are also shown, keeping the spinning ball size constant and increasing ball
resolution (to 1522 nodes), cylinder resolution (to 23 362 nodes), or cylinder height



Apparent slip at the surface of a ball 391

1.12

1.10

R0 = 5, h = 10

R0 = 10, h = 10

R0 = 5, h = 20

Spinning ball -- 1522 nodes

Cylinder -- 23362 nodes

1.08

1.06

1.04

1.02

1.00

D
im

en
si

on
le

ss
 to

rq
ue

10 2
Dimensionless ball radius

Figure 8. Comparison of the Newtonian torque with the analytical prediction. Standard
resolution includes 122 nodes on each suspended particle, 362 nodes on the spinning ball, and
5762 nodes on the cylinder. Values for higher-resolution meshes are also shown.

or radius. Some tests were also performed for a concentration of c = 0.25 with higher
particle resolution (290 nodes per particle), but the latter were found to have minimal
effect on the calculated torque. The most important limiting factor is the finite size of
the container (specifically its radius) that in turn is limited by the number of particles
we can simulate.

Instantaneous dimensionless couples calculated from random initial configurations
for a dilute concentration of 0.03 are shown in figure 9 for two ensemble sizes, 10
and 60 initial particle configurations. Both results compare favourably with Almog &
Brenner’s (1998) dilute suspension theory. Though there is clearly more scatter with
the smaller ensemble size, the ensemble size of 10 is believed to be large enough to
capture the configuration dependence of the system. The simulations also appear to
consistently underpredict the analytical theory. In short transient boundary-element
simulations for 8 revolutions of the spinning ball, there was no variation in the torque
(< 0.5 %). Thus, for dilute solutions, the particle structure appears to be unaffected
by flow, whence the initial randomly generated configurations adequately describe the
system microstructure.

For a moderately concentrated suspension (c = 0.25), suspension viscosities
calculated from ensemble averages of 10 random initial configurations are compared
in figure 10 with experimentally measured relative suspension viscosities. The
boundary-element simulations are again seen to underpredict the expected viscosity
of the suspension. To test the possible influence of the use of a random particle
configuration upon the torque measurements, transient calculations were performed
for several ratios of ball to suspended-particle size. In other flows of concentrated
suspensions, flow-induced structure formation has been observed (Gadala-Maria &
Acrivos 1980; Parsi & Gadala-Maria 1987; Morris & Brady 1997). By performing
dynamic calculations, the possible effects of flow-induced structure can be included in
the comparison with experiment. For each of the 10 initial configurations, the flow is
simulated for 5–10 revolutions of the spinning ball, and the transient torques ensemble
averaged. Figure 11 shows the combined transient torque data for 10 configurations
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Figure 10. Comparison of relative viscosity from experiment and boundary-element
simulation for c = 0.25.

with a2/a1 = 0.25, as well as the resulting averaged torque. For other cases where
the spinning ball is larger than the suspended particles, the torque is also seen to
increase when the flow is started, whereas for a2/a1 > 1, the change in the torque
is small (< 0.5 % for a2/a1 = 2). After several revolutions, the averaged torque stops
increasing and reaches an approximate plateau. The value is then averaged over a ball
revolution and used to calculate the dynamic relative viscosity shown in figure 10.
This plateau region is by no means a steady-state viscosity, but rather is thought to
represent a more accurate comparison with the averaged initial torque measured in
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the experiments. The simulations took longer to reach this plateau than did the actual
experiments (about 2 or 3 revolutions). For longer times, the calculated torque is
seen to decrease in the same manner as observed experimentally (figure 12); however,
steady state is achieved much faster. We speculate that that is because of the relatively
small system size in the simulations.

5. Summary and conclusions
The torque on a ball rotating at small Reynolds numbers in an otherwise

quiescent suspension of comparably-sized neutrally buoyant spheres was measured
experimentally for different concentrations of suspended particles, ball angular
velocities and ratios of spinning ball to suspended-sphere sizes. This ‘spinning-ball
viscometer’ was initially tested by using (2) to confirm the known viscosity of the
homogeneous Newtonian interstitial suspending liquid. The outcome of the spinning-
ball viscosity measurements performed on the pure Newtonian solvent differed by
only a few per cent from the comparable viscosities measured independently with
a capillary viscometer. This suggests that the hypothesized linear additivity of the
respective torques on the ball and rod, each rotating in isolation from the other, did
not result in significant errors.

During the suspension experiments the torque on the spinning ball initially
increased, then decreased with increasing number of revolutions, ultimately
approaching an asymptote. This phenomenon did not occur during the comparable
homogeneous Newtonian liquid experiments, where the torque remained independent
of the number of ball revolutions. The suspensions were initially well stirred. We
speculate that the initial torque increase is caused by a change in the suspension’s
microstructure due to the resulting flow at short times. Subsequently, the torque
decreased as the cumulative number of revolutions of the ball increased, presumably
as the suspended particles migrated away from the high shear-rate region existing in
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Figure 12. Long-time three-dimensional transient simulation results compared with
experiments. (a) is an expanded view of (b).

proximity to the spinning ball. All other things being equal except angular velocity, this
temporal torque diminution depended only upon the total number of ball rotations,
but not upon the characteristic shear rate. This is consistent with other low-Reynolds-
number shear-induced migration phenomena (Leighton & Acrivos 1987b; Phillips
et al. 1992). The instantaneously measured torque on the spinning ball also fluctuated
only in the case of the suspensions, but not in the homogeneous suspending-fluid
case, leading to the speculation that the observed fluctuation phenomenon is caused
by time-dependent hydrodynamic interactions of the spinning ball with the suspended
particles arising from temporal changes in the local suspended particle configuration
and, hence, local suspension ‘concentration’ c. These observations are consistent with
the results of our dynamic boundary-element calculations for a ball spinning in a
suspension of similar spheres.
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Use of (2) to interpret the torque measured initially in a presumably homogeneous
suspension, served to define the apparent viscosity of the suspension based on the
supposition that the latter could initially be regarded as a homogeneous Newtonian-
like continuum prior to the development of inhomogeneities arising from shear-
induced particle migration, and that no slip prevailed at the surface of the spinning
ball. This short-time (spinning-ball) apparent viscosity agreed fairly well with earlier
experiments (see the summary by Abbott et al. 1998) using falling-ball viscometry
for similarly constituted suspensions (i.e. possessing the same volume fraction c,
same suspended particle size a2, etc.) as well as with other published values for
measurements in shear and capillary viscometers (Thomas 1965). For a given
suspension, as the ratio a2/a1 became larger the apparent spinning-ball viscosity
decreased dramatically, thereby exhibiting an apparent surface ‘slip’. This ball-size
phenomenon was anticipated in this range of a2/a1 values based upon theoretical
predictions by Almog & Brenner (1998), albeit for dilute suspensions. The apparent
slip became more pronounced with increasing suspension concentration c.

Fully three-dimensional boundary-element method (BEM) simulations of the inter-
stitial Stokes flow arising from a ball spinning in a dilute suspension of neutrally
buoyant spheres were performed. The boundary conditions imposed on each particle
included no-slip between the interstitial fluid and the particle’s surface. The calculated
torque obtained during these particle-level simulations was consistent with that
obtained by approximating the suspension as a hypothetical homogeneous single-
phase fluid while imposing a partial slip boundary condition at the spinning ball
surface. Calculations for a c = 0.03 suspension compared well with the theoretical
predictions of Almog & Brenner (1998), confirming that such slip becomes more
pronounced as the ratio a2/a1 increases.

BEM simulations performed at moderately high concentrations of suspended
spheres (c = 0.25) agreed with our experimental observations. These simulations
displayed fluctuations in the instantaneous configuration-specific torque on the
spinning ball, as well as manifesting an initial short-time increase in torque followed by
an overall decrease in torque with increasing number of revolutions – both phenomena
being qualitatively in agreement with our experiments. Inasmuch as the numerical
simulations assume Stokes flow and an infinite Péclet number, the initial increase in
torque observed in the simulations can only be attributed to microstructural changes
occurring in the local particle distribution caused by the flow.

Like its falling-ball counterpart, the spinning-ball rheometer provides a unique tool
for statistically probing discrete non-continuum aspects of suspension behaviour. The
ability to do so arises from the fact the ‘tracer’ is comparable in size to the suspended
particles and/or to the mean distance separating them. This attribute, coupled with
the fact that the suspension is quiescent except for the fluid motion generated by the
probe itself, results in the tracer responding to microscale fluctuations in local particle
concentration occurring in its immediate environment. In the falling-ball case, such
fluctuations are manifested as a Fickian dispersion phenomenon (Abbott et al. 1998).
A comparable dispersion theory, globally quantifying the statistics of the fluctuations
in the corresponding spinning-ball case, has yet to be developed.
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